6.2 Integral Definition & Properties


6.1 « 6.2 » 6.3

6.2 Contents

  1. Definition & Notation 🔧

  2. Arithmetic Properties 🔧

  3. Integration by Parts

  4. Improper Integrals 🔧


6.2.1 Definition & Notation 🔧

$$\int_a^b f(x)\thinspace dx=\lim\limits_{\Delta\to 0}\sum_{k=1}^n f(\bar{x}_k)\cdot \Delta x_k$$

6.2.2 Arithmetic Properties 🔧

Constant Rule
$$\int c\thinspace dx=x+C$$
Constant Multiple Rule
$$\int c\cdot f(x)\thinspace dx=c\cdot\int f(x)\thinspace dx$$
Sum & Difference Rules
$$\int\big(f(x)\pm g(x)\big)\thinspace dx=\int f(x)\thinspace dx\pm \int g(x)\thinspace dx$$

6.2.3 Integration by Parts

$$\int_a^b u\cdot dv=u\cdot v\bigg|_a^b-\int_a^b v\cdot du$$
Proof
Given the derivative product rule $$\frac{d}{dx}(u\cdot v)=v\cdot\frac{du}{dx}+u\cdot\frac{dv}{dx}$$ Integrate $$u\cdot v=\int v\cdot du+\int u\cdot dv$$ Subtract $\int v\cdot du$

6.2.4 Improper Integrals 🔧


6.1 « 6.2 » 6.3