6.3 Exponentiation Integrals


6.2 « 6.3 » 6.4

6.3 Contents

  1. Power rule; $\int x^n\thinspace dx\enspace\&\medspace\int (1/x)\thinspace dx$ 🔧

  2. $\int b^{a\cdot x}\thinspace dx\enspace\&\medspace\int e^{a\cdot x}\thinspace dx$ 🔧

  3. $\int\log_b x\thinspace dx\enspace\&\medspace\int\ln(x)\thinspace dx$ 🔧


6.2.1 Power rule; $\int x^n\thinspace dx\thinspace$ & $\thinspace\int (1/x)\thinspace dx$ 🔧

$$\int x^n\thinspace dx\thinspace=\frac{x^{x+1}}{x+1}+C,\medspace n\ne 1$$ $$\thinspace\int x^{-1}\thinspace dx=\ln|x|+C$$
Proof of $\int x^n\thinspace dx$
Proof of $\int (1/x)\thinspace dx$

6.3.2 $\int b^{a\cdot x}\thinspace dx\thinspace$ & $\thinspace\int e^{a\cdot x}\thinspace dx$ 🔧

$$\int b^{a\cdot x}\thinspace dx\thinspace=\frac{b^{a\cdot x}}{a\cdot\ln(b)}+C$$ $$b>0\medspace\land\medspace b\ne 1$$

6.3.3 $\int\log_b x\thinspace dx\thinspace$ & $\thinspace\int\ln(x)\thinspace dx$ 🔧

$$\int\log_b x\thinspace dx=\frac{x\cdot\ln(x)-x}{\ln(b)}+C$$ $$\therefore\int\ln(x)\thinspace dx=x\cdot\ln(x)-x+C$$
Proof
Use the change the base of the logarithm for $e$ $$\int\log_b x\thinspace dx=\int\frac{\ln(x)}{\ln(b)}\thinspace dx$$ Apply the constant multiple rule $$\int\log_b x\thinspace dx=\frac{1}{\ln(b)}\cdot\int\ln(x)\thinspace dx$$ Define parts for integration $$u=\ln(x)\qquad u'=\frac{1}{x}\thinspace dx$$ $$v=x\qquad\quad\enspace\thinspace v'=1\thinspace dx\thickspace$$ Rewrite the integral $$\int\log_b x\thinspace dx=\frac{1}{\ln(b)}\cdot\bigg(\ln(x)\cdot x-\int x\cdot\frac{1}{x}\thinspace dx\bigg)$$ Simplify $$\int\log_b x\thinspace dx=\frac{1}{\ln(b)}\cdot\bigg(\ln(x)\cdot x-\int dx\bigg)$$ Evaluate with the power rule

6.2 « 6.3 » 6.4