![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Definition & Notation
Arithmetic Properties
Riemann Sum
Definition & Notation
Arithmetic Properties
Integration by Parts
Improper Integrals
$\int x^n\thinspace dx\enspace\&\medspace\int (1/x)\thinspace dx$
$\int b^{a\cdot x}\thinspace dx$ & $\int e^{a\cdot x}\thinspace dx$
$\int \log_b x\thinspace dx$ & $\int \ln(x)\thinspace dx$
$\int \sin(x)\thinspace dx$
$\int \cos(x)\thinspace dx$
$\int \sec(x)\thinspace dx$
$\int \csc(x)\thinspace dx$
$\int \tan(x)\thinspace dx$
$\int \cot(x)\thinspace dx$
$\int \sin^2(x)\thinspace dx$
$\int \cos^2(x)\thinspace dx$
$\int \sec^2(x)\thinspace dx$
$\int \csc^2(x)\thinspace dx$
$\int \tan^2(x)\thinspace dx$
$\int \cot^2(x)\thinspace dx$
$\int \sin^{-1}(x)\thinspace dx$
$\int \cos^{-1}(x)\thinspace dx$
$\int \sec^{-1}(x)\thinspace dx$
$\int \csc^{-1}(x)\thinspace dx$
$\int \tan^{-1}(x)\thinspace dx$
$\int \cot^{-1}(x)\thinspace dx$
$\int \sin^n(x)\thinspace dx$
$\int \cos^n(x)\thinspace dx$
$\int \sec^n(x)\thinspace dx$
$\int \csc^n(x)\thinspace dx$
$\int \tan^n(x)\thinspace dx$
$\int \cot^n(x)\thinspace dx$
$\int \sec^n(a\cdot x)\cdot\tan(a\cdot x)\thinspace dx$
$\int \csc^n(a\cdot x)\cdot\cot(a\cdot x)\thinspace dx$
$\int 1/(1\pm\sin(a\cdot x))\thinspace dx$
$\int 1/(1\pm\cos(a\cdot x))\thinspace dx$
$\int \sin(a\cdot x)\cdot\sin(b\cdot x)\thinspace dx$
$\int \sin(a\cdot x)\cdot\cos(b\cdot x)\thinspace dx$
$\int \cos(a\cdot x)\cdot\cos(b\cdot x)\thinspace dx$
$\int \sin^m(x)\cdot\cos^n(x)\thinspace dx\enspace$(sine reduction)
$\int \sin^m(x)\cdot\cos^n(x)\thinspace dx\enspace$(cosine reduction)
$\int x^n\cdot\sin(a\cdot x)\thinspace dx$
$\int x^n\cdot\cos(a\cdot x)\thinspace dx$
$\int \sqrt{x^2+a^2}\thinspace dx$
$\int \sqrt{x^2-a^2}\thinspace dx$
$\int \sqrt{a^2-x^2}\thinspace dx$
$\int x\cdot\sqrt{x^2+a^2}\thinspace dx$
$\int x\cdot\sqrt{x^2-a^2}\thinspace dx$
$\int x\cdot\sqrt{a^2-x^2}\thinspace dx$
$\int x^2\cdot\sqrt{x^2+a^2}\thinspace dx$
$\int x^2\cdot\sqrt{x^2-a^2}\thinspace dx$
$\int x^2\cdot\sqrt{a^2-x^2}\thinspace dx$
$\int \sqrt{x^2+a^2}/x\thinspace dx$
$\int \sqrt{x^2-a^2}/x\thinspace dx$
$\int \sqrt{a^2-x^2}/x\thinspace dx$
$\int \sqrt{x^2+a^2}/x^2\thinspace dx$
$\int \sqrt{x^2-a^2}/x^2\thinspace dx$
$\int \sqrt{a^2-x^2}/x^2\thinspace dx$
$\int 1/\sqrt{x^2+a^2}\thinspace dx$
$\int 1/\sqrt{x^2-a^2}\thinspace dx$
$\int 1/\sqrt{a^2-x^2}\thinspace dx$
$\int x/\sqrt{x^2+a^2}\thinspace dx$
$\int x/\sqrt{x^2-a^2}\thinspace dx$
$\int x/\sqrt{a^2-x^2}\thinspace dx$
$\int x^2/\sqrt{x^2+a^2}\thinspace dx$
$\int x^2/\sqrt{x^2-a^2}\thinspace dx$
$\int x^2/\sqrt{a^2-x^2}\thinspace dx$
$\int 1/(x\cdot\sqrt{x^2+a^2})\thinspace dx$
$\int 1/(x\cdot\sqrt{x^2-a^2})\thinspace dx$
$\int 1/(x\cdot\sqrt{a^2-x^2})\thinspace dx$
$\int 1/(x^2\cdot\sqrt{x^2+a^2})\thinspace dx$
$\int 1/(x^2\cdot\sqrt{x^2-a^2})\thinspace dx$
$\int 1/(x^2\cdot\sqrt{a^2-x^2})\thinspace dx$
Sequences
Infinite Series
Geometric Series
Tests
Alternating Series
Power Series
Taylor Series
Polar Coordinates
Parametric Coordinates
Conic Sections
Definition
Convolution
Laplace Transform
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |