5.3 Differentiation


5.2 « 5.3 » 5.4

5.3 Contents

  1. Derivative Definition & Function 🔧

  2. Notation

  3. Tangent Line 🔧

  4. Differentiability 🔧

  5. First Derivative Use

  6. Second Derivative Use


5.3.1 Derivative Definition & Function 🔧

A function’s instantaneous rate of change along any given point. The derivative function is essentially the slope formula with one point. $$\frac{d}{dx}f(x)=\lim\limits_{x→a}\frac{f(x)-f(a)}{x-a}$$ $$=\lim\limits_{\Delta x→0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$

5.3.2 Notation

Notation First Second
Leibniz $$\frac{dy}{dx} \medspace\text{or}\medspace \frac{d}{dx}f{x}$$ $$\frac{d^2y}{dx^2} \medspace\text{or}\medspace \frac{d^2}{dx^2}f{x}$$
Langrange $$f'(x)$$ $$f''(x)$$
Newton $$\dot{x}$$ $$\ddot{x}$$
Euler $$Df$$ $$D^2f$$

5.3.3 Tangent Line 🔧

The point-slope equation for a line parallel to and touching a function at a specific point $$y-f(a)=f'(a)(x-a)$$

5.3.4 Differentiability 🔧

A function $f(x)$ is differentiable at a point $a$ except in the following conditions

5.3.5 First Derivative Use


5.3.6 Second Derivative Use


5.2 « 5.3 » 5.4