5.2 Mathematical Constants


5.1 « 5.2 » 5.3

5.2 Contents

  1. Proof of $π$ 🔧

  2. The Natural Number $e$ 🔧

  3. The Golden Ratio $φ$ 🔧

  4. The Plastic Ratio 🔧


5.2.1 Proof of $π$ 🔧

In regular polygons, as the number of sides → ∞, the perimeter approaches a circumference, wherein $π$ can be manually calculated.

5.2.2 The Natural Number $e$ 🔧

Continually compounded growth with 100% (1) return at a continuous rate yields a limit at $e$ $$e=\lim_{x→∞} {\bigg( 1+\frac{1}{x} \bigg)}^x=\lim_{x→0} {(1+x)}^{1/x}≈2.7 \medspace 1828 \medspace 1828 \medspace 459$$
$e$ Limit
$$\lim_{x→0}\frac{e^x-1}{x}=1$$
Natural Logarithm
The inverse function of $e^x$ is $\log_e x$, represented as $\ln(x)$
Limits of Natural Exponents & Logarithms
$$\lim_{x→\pm ∞}e^{\pm x}=∞\qquad\lim_{x→\pm ∞}e^{\mp x}=0$$
Proof of $e$ Limit
$$e=\lim_{x→0}{(1+x)}^{1/x}$$

5.2.3 The Golden Ratio $\varphi$ 🔧

Definition
Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities $$\frac{x+a}{x}=\frac{x}{a}$$
Ratios
$$\varphi=\frac{1+\sqrt{5}}{2}\approx1.61803$$ $$\phi=\frac{1-\sqrt{5}}{2}\approx-0.61803$$
Proof of Ratios
Given the ratio equality, substitute 1 for $a$ $$\frac{x+1}{x}=x$$ Multiply by $x$ $$x+1=x^2$$ Rearrange to appear as a standard quadratic equation $$x^2-x-1=0$$ Use the quadratic formula to find the values of $x$ $$x=\frac{-(-1)\pm\sqrt{(-1)^2-4\cdot 1\cdot-1}}{2\cdot 1}$$ Simplify
Fibonacci Series & $\varphi$ Limit
A series of a recursive function whose numbers are the sum of its previous two numbers, starting with 1,1 $$F_n=F_{n+1}+F_{n+2}$$ $$\{1,1,2,3,5,8,13,21,34,55,89,144,...\}$$ It can be rearranged to determine negative values before 1,1 $$F_{n+2}=F_n-F_{n+1}$$ $$\{...,-144,+89,-55,+34,-21,+13,-8,+5,-3,+2,-1,1,0,1,1\}$$
Golden Ratio Powers
Algebraic Functions for the Fibonacci Series

5.2.4 The Plastic Ratio 🔧

$$\rho=\frac{a}{b}=\frac{b+c}{a}=\frac{b}{c}$$ $$a>b>c>0$$ The only real solution of $x^3=x+1$

$\approx1.32472$

(Need to insert cubic formula in 2.3)

5.1 « 5.2 » 5.3