5.2 Mathematical Constants


5.1 ยซ 5.2 ยป 5.3

5.2 Contents

  1. Proof of $ฯ€$ ๐Ÿ”ง

  2. The Natural Number $e$ ๐Ÿ”ง

  3. The Golden Ratio $ฯ†$ ๐Ÿ”ง

  4. The Plastic Ratio ๐Ÿ”ง


5.2.1 Proof of $ฯ€$ ๐Ÿ”ง

In regular polygons, as the number of sides โ†’ โˆž, the perimeter approaches a circumference, wherein $ฯ€$ can be manually calculated.

5.2.2 The Natural Number $e$ ๐Ÿ”ง

Continually compounded growth with 100% (1) return at a continuous rate yields a limit at $e$ $$e=\lim_{xโ†’โˆž} {\bigg( 1+\frac{1}{x} \bigg)}^x=\lim_{xโ†’0} {(1+x)}^{1/x}โ‰ˆ2.7 \medspace 1828 \medspace 1828 \medspace 459$$
$e$ Limit
$$\lim_{xโ†’0}\frac{e^x-1}{x}=1$$
Natural Logarithm
The inverse function of $e^x$ is $\log_e x$, represented as $\ln(x)$
Limits of Natural Exponents & Logarithms
$$\lim_{xโ†’\pm โˆž}e^{\pm x}=โˆž\qquad\lim_{xโ†’\pm โˆž}e^{\mp x}=0$$
Proof of $e$ Limit
$$e=\lim_{xโ†’0}{(1+x)}^{1/x}$$

5.2.3 The Golden Ratio $ฯ†$ ๐Ÿ”ง

Definition
Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities $$\frac{x+a}{x}=\frac{x}{a}$$
Proof of Ratios
Given the ratio equality, substitute 1 for $a$ $$\frac{x+1}{x}=x$$ Multiply by $x$ $$x+1=x^2$$ Rearrange to appear as a quadratic equation $$x^2-x-1=0$$ Use the quadratic formula to find the values of $x$ $$x=\frac{-(-1)\pm\sqrt{(-1)^2-4ยท1ยท-1}}{2ยท1}$$ Watch those signs $$x=\frac{1\pm\sqrt{5}}{2}$$
Fibonacci Series & $ฯ†$ Limit
Golden Ratio Powers
Algebraic Functions for the Fibonacci Series

5.2.4 The Plastic Ratio ๐Ÿ”ง

$$\rho=\frac{a}{b}=\frac{b+c}{a}=\frac{b}{c}$$ $$a>b>c>0$$ The only real solution of $x^3=x+1$

$\approx1.32472$

(Need to insert cubic formula in 2.3)

5.1 ยซ 5.2 ยป 5.3