5.1 Limits


« 5.1 » 5.2

5.1 Contents

  1. Definition & Notation

  2. Continuity

  3. Arithmetic Properties

  4. Limits of Lines & Asymptotes

  5. Squeeze Theorem

  6. Limits of Trig Functions

  7. Limits Related to Zero & Infinity


5.1.1 Definition & Notation

Determinations of specific values in a function, even where values don't exist. $$\frac{x^2-4}{x-2}\medspace→\medspace\frac{2^2-4}{2-2}=\frac{0}{0}$$
$$\lim\limits_{x\to a^+}f(x)$$ The limit as a function approaches a point from the right
$$\lim\limits_{x\to a^-}f(x)$$ The limit as a function approaches a point from the left
$$\lim\limits_{x\to a}f(x)$$ The limit as a function approaches a point from the both sides

5.1.2 Continuity

A function $f(x)$ is continuous at point $a$ if the limit exists and $f(a)$ is defined;

Learn: Paul's Online Notes

5.1.3 Arithmetic Properties

The limit of a constant function is equal to the constant $$\lim\limits_{x\to a} c=c$$
The limit of a constant multiple of a function equals the product of the constant with the limit of the function $$\lim\limits_{x\to a} c\cdot f(x)=c\cdot\lim\limits_{x\to a} f(x)$$
The limit of sums is the sum of the limits $$\lim\limits_{x\to a} \big(f(x)\pm g(x)\big)=\lim\limits_{x\to a} f(x)\pm \lim\limits_{x\to a} g(x)$$
The limit of products is the product of the limits $$\lim\limits_{x\to a} \big(f(x)\cdot g(x)^{\pm 1}\big)=\lim\limits_{x\to a} f(x)\cdot \lim\limits_{x\to a} g(x)^{\pm 1}$$
Learn: Paul's Online Notes
Jump to Limits of Trig Functions

5.1.4 Limits of Lines & Asymptotes

Equation of a line $\lim_{x\to a}f(x)=f(a)=m·a+b$
Horizontal asymptote The line $x=c$ is defined as $\lim_{x→c}f(x)=\pm ∞$
Vertical asymptote The line $y=c$ is defined as $\lim_{x→\pm ∞}f(x)=c$

5.1.5 Squeeze Theorem

Given the transitive property, and three functions related as $f(x)≤g(x)≤h(x)$ converging to a point $$\text{If }\lim_{x\to a}f(x)=\lim_{x\to a}h(x)=L\text{ then }\lim_{x\to a}g(x)=L$$

5.1.6 Limits of Trig Functions

$$\lim\limits_{\theta\to 0}\frac{\sin(\theta)}{\theta}=1\qquad\lim\limits_{\theta\to 0}\frac{\cos(\theta)-1}{\theta}=0$$
Proof of Sine Limit
Use the incircle of a regular octagon with an apothem of magnitude 1 to define points in the sector for $0 \le \theta \le \pi/4$ Add to the top right corner a triangular region, forming an overall right triangle The following determination can be made inside of triangle $OAD$ $$\text{arc} AC \lt |AB|+|BC| \lt \big(|AB|+|BD|=|AD|\big)$$ $$\land \medspace |AD|=|OA|\cdot\tan(\theta)=\tan(\theta)$$ $$\therefore \text{arc} AC \lt\tan(\theta)$$ The apothem is $1$ and the arc length $AC$ is the angle $\theta$. Substitute tangent for its cofunctions, then isolate $\cos(\theta)$ $$\theta \lt \frac{\sin(\theta)}{\cos(\theta)} \medspace \to \medspace \cos(\theta) \lt \frac{\sin(\theta)}{\theta}$$ Connect point $C$ perpendicularly to $|OA|$ at point $E$, and connect a line segment to $|AC|$ Note that $|CE|=|OC|\cdot\sin(\theta)=\sin(\theta)$ and $|CE|\lt |AC|\lt arc AC$. It follows that $$\sin(\theta)\lt\theta\medspace\therefore\medspace\frac{\sin(\theta)}{\theta}\lt 1$$ Combine the two inequalities involving $\sin(\theta)/\theta$ $$\cos(\theta)\lt\frac{\sin(\theta)}{\theta}\lt 1$$ Apply the squeeze theorem for the limit on the right $$\lim_{\theta\to 0^+}\cos(\theta)=1\medspace\land\medspace\lim_{\theta\to 0^+}1=1\medspace\therefore\medspace\lim_{\theta\to 0^+}\frac{\sin(\theta)}{\theta}=1$$ Sine is an odd function, so its nature tending to zero may be determined with sign reversal $$\frac{\sin(-\theta)}{-\theta}=\frac{-\sin(\theta)}{-\theta}=\frac{\sin(\theta)}{\theta}$$ Since the function is the same from the reverse direction, the limit exists $$\lim_{\theta\to 0^-}\frac{\sin(\theta)}{\theta}=\lim_{\theta\to 0^+}\frac{\sin(\theta)}{\theta}=\lim_{\theta\to 0}\frac{\sin(\theta)}{\theta}=1$$
Proof of Cosine Limit
Given the cosine limit, multiply by its conjugate $$\lim\limits_{x\to 0}\frac{\cos(\theta)-1}{\theta}\cdot \frac{\cos(\theta)+1}{\cos(\theta)+1}$$ Factor $$\lim\limits_{x\to 0}\frac{\cos^2(\theta)-1}{\theta\cdot(\cos(\theta)+1)}$$ Apply the right angle identity for sine $$\lim\limits_{x\to 0}\frac{-\sin^2(\theta)}{\theta\cdot(\cos(\theta)+1)}$$ Isolate $\sin(\theta)/\theta$ with the limit of products $$\lim\limits_{x\to 0}\frac{-\sin(\theta)}{\cos(\theta)+1}\cdot\lim\limits_{\theta\to 0}\frac{\sin(\theta)}{\theta}$$ Evaluate the limits $$\frac{0}{2}\cdot 1$$

5.1.7 Limits Related to Zero & Infinity

$$\lim\limits_{x→0^\pm} \frac{c}{x}=\pm ∞,\medspace c\ne 0$$ $$\lim\limits_{x→\pm ∞} \frac{c}{x}=0,\medspace c\ne 0$$

« 5.1 » 5.2